Lewis Acid Catalysed trans-Hydrostannylation of Acetylenes

Naoki Asao, Jian-Xiu Liu, Tomoko Sudoh and Yoshinori Yamamoto*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-77, Japan

A Lewis acid such as ZrCl₄ or HfCl₄ catalyses the hydrostannylation of acetylenes **1** to produce the *trans*-hydrostannylation products **2** regio- and stereo-selectively.

It is well known that the hydrostannylation¹ of acetylenes is induced by either radical initiators² or transition metal catalysts.³ The radical induced procedure often gives a mixture of the *trans*- and *cis*-hydrostannylation products, since the isomerization of the alkenyltin products occurs in the presence of tin radicals.⁴,[†] The transition metal catalysed reaction proceeds *via* the *cis*-hydrostannylation pathway.³ We report that the hydrostannylation process is catalysed dramatically by Lewis acids such as ZrCl₄ or HfCl₄, and that the ZrCl₄ catalysed procedure yields the *trans*-hydrostannylation product regio- and stereo-selectively (Scheme 1).

The results are summarized in Table 1. The reaction of oct-1-yne 1a with Bu₃SnH in the presence of 1.1 equiv. of ZrCl₄ in toluene gave the trans-hydrostannylation product 2a (Zvinylstannane) regio- and stereo-selectively in 30% yield (entry 1).‡ Although the yield of 2a was low, the stereoisomer 3a (Evinylstannane) was not detected in the ¹H NMR spectra of the reaction products. The chemical yield was enhanced to 76% by using 0.2 equivalents of ZrCl₄ (entry 2), and the use of hexane as solvent gave an 89% yield (entry 3). It should be noted that ZrCl₄ is not soluble in toluene and hexane at 0 °C and therefore the reaction is carried out as a heterogeneous system. The use of THF and CH₂Cl₂ as solvent, which dissolve the catalyst more effectively than the non-polar solvents, gave lower stereoselectivity and chemical yield. HfCl4 was also an efficient catalyst for the trans-hydrostannylation (entry 4), but the reaction time using HfCl₄ was slightly longer than that using ZrCl₄. The use of a typical Lewis acid of group 14, AlCl₃, as a catalyst afforded a 60:40 mixture of 2a and 3a in 53% yield.

We examined the $ZrCl_4$ catalysed hydrostannylation of several other alkynes. The reaction of phenylacetylene **1b** gave **2b** in 73% yield along with trace amounts of **3b** (entry 5), whereas the addition to *p*-tolylacetylene **1c** afforded stereo-

Table 1 Lewis acid catalysed hydrostannylation of acetylenes with Bu₃SnH^a

selectively 2c in 84% yield while the stereoisomer 3c was not detected (entry 6). The reaction of 5-(*tert*-butyldimethylsilyloxy)pent-1-yne 1d gave 2d stereoselectively in high yield (entry 7). On the other hand, the addition to 5-benzyloxypent-1-yne 1e did not take place and the starting material was recovered quantitatively (entry 8). A Lewis acid can coordinate more easily to a BnO group than to a sterically demanding Bu'Me₂SiO group. It seems that ZrCl₄ coordinates to the BnO group of 1e, instead of acting as a catalyst for the hydrostannylation. The ZrCl₄-catalysed hydrostannylation of 1-chlorooct-1-yne 1f gave 2f stereo- and regio-selectively in moderate yield (entry 9). The reaction of dodec-6-yne 1g and diphenylacetylene 1h also proceeded smoothly, although the use of stoichiometric amounts of ZrCl₄ gave better results.

Preparation of **2d** from **1d** is representative. To a suspension of $ZrCl_4$ (47 mg, 0.2 mmol) in toluene (0.5 ml) was added **1d** (0.24 ml, 1.0 mmol) at 0 °C under an Ar atmosphere. The mixture was stirred for 5 min, and then Bu₃SnH (0.42 ml, 1.5 mmol) was added. The mixture was stirred for 1 h at 0 °C and Et₃N (0.07 ml, 0.5 mmol) was added. The mixture was allowed to warm to room temperature, and stirring was continued for 5 min. Hexane was added and the mixture was filtered through

	Tii-d	1				trans: cis-hydrostannylation
 Entry	(equiv.)	R ¹	R ²		Yield $(\%)^b$	
1	$ZrCl_4$ (1.1)	Me(CH ₂) ₅	Н	(1a)	30	>95:5
2	$ZrCl_4$ (0.2)	$Me(CH_2)_5$	Н	(1a)	76	>95:5
3d	$ZrCl_4$ (0.2)	Me(CH ₂) ₅	Н	(1a)	89	>95:5
4	HfCl ₄ (0.2)	$Me(CH_2)_5$	Н	(1a)	86	>95:5
5	$ZrCl_4$ (0.2)	Ph	Н	(1b)	73	95:5
6	$ZrCl_4$ (0.2)	p-MeC ₆ H ₄	Н	(1c)	84	>95:5
7	$ZrCl_4$ (0.2)	ButMe2SiO(CH2)3	Н	(1d)	87	>95:5
8	$ZrCl_4$ (0.2)	$BnO(CH_2)_3$	Н	(1e)	0^e	
9	$ZrCl_4$ (0.2)	Me(CH ₂) ₅	Cl	(1f)	47	>95:5
10	ZrCl ₄ (1.0)	$Me(CH_2)_4$	$Me(CH_2)_4$	(1 g)	56	>95:5
11	ZrCl ₄ (1.0)	Ph	Ph	(1h)	33f	>95:5

^{*a*} Reactions were conducted in toluene at 0 °C under Ar unless otherwise noted. ^{*b*} Determined by ¹H NMR spectra of the reaction products using *p*-xylene as an internal standard. ^{*c*} Determined by 270 MHz ¹H NMR spectra. The stereoisomers **3** were not detected. The ratio, >95:5, came from the limit of detection for the stereoisomer. ^{*d*} Hexane was used as a solvent. ^{*e*} The starting material **1e** was recovered quantitatively. ^{*f*} trans-Stilbene was obtained in 46% yield in addition to a 33% yield of **2h**.

celite to remove solid material. Removal of the solvents under reduced pressure gave an oily material. The ¹H NMR spectra indicated that 2d was produced in 87% yield.

A plausible mechanism for the $ZrCl_4$ catalysed *trans*hydrostannylation is shown in Scheme 2,§ although it is highly speculative. Presumably, there would be a rapid equilibrium between Bu₃SnH and ZrCl₄, and the reactive species 4. It is most probable that the hydrostannylation of 1 with 4 proceeds through 5 to give 2 and ZrCl₄. Although further investigation is needed to establish the mechanism of this ZrCl₄ catalysed reaction, the procedure is synthetically useful since the (Z)alkenyltributylstannanes 2 are not readily available.

Received, 29th August 1995; Com. 5/05661F

Footnotes

[†] The sonochemical hydrostannylation produces the *trans*-hydrostannylation product stereoselectively [ref. 2(c)]. [†] The hyperduct set loss was produced

‡ The by-product oct-1-ene was produced.

§ In AlCl₃ catalysed hydrosilylation reactions of alkenes, a similar silyl hydride–AlCl₃ complex was suggested (ref. 5).

References

- 1 M. Pereyre, J.-P. Quintard and A. Rahm, *Tin in Organic Synthesis*, Butterworths, London, 1987; A. J. Leusink, H. A. Budding and W. Drenth, *J. Organomet. Chem.*, 1967, **9**, 295; A. J. Leusink, H. A. Budding and W. Drenth, *J. Organomet. Chem.*, 1967, **9**, 285.
- 2 (a) Use of AIBN as a radical initiator: ref. 1; (b) use of Et₃B: K. Nozaki,
 K. Oshima and K. Utimoto, J. Am. Chem. Soc., 1987, 109, 2547; K. Nozaki, K. Oshima and K. Utimoto, Bull. Chem. Soc. Jpn., 1987, 60, 3465; (c) use of ultrasound: E. Nakamura, Y. Imanishi and D. Machii, J. Org. Chem., 1994, 59, 8178; E. Nakamura, D. Machii and T. Inubushi, J. Am. Chem. Soc., 1989, 111, 6849.
- 3 Pd catalysts: Y. Ichinose, H. Oda, K. Oshima and K. Utimoto, Bull. Chem. Soc. Jpn., 1987, 60, 3468; H. X. Zhang, F. Guibe and G. Balavoine, Tetrahedron Lett., 1988, 29, 619; H. Miyake and K. Yamamura, Chem. Lett., 1989, 981; Rh catalysts: K. Kikukawa, F. Umekawa, G. Wada and T. Matsuda, Chem. Lett., 1988, 881; Mo catalysts: H. X. Zhang, F. Guibe and G. Balavoine, J. Org. Chem., 1990, 55, 1857.
- 4 A. J. Leusink, H. A. Budding and W. Drenth, J. Organomet. Chem., 1968, 11, 541; C. Nativi and M. Taddei, J. Org. Chem., 1988, 53, 820.
- 5 K. Yamamoto and M. Takemae, Synlett, 1990, 259